organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-Dicyclohexyl-N",N"-dimethylphosphoric triamide

Fahimeh Sabbaghi,^a* Mehrdad Pourayoubi,^b Fatemeh Karimi Ahmadabad,^b Zahra Azarkamanzad^b and Ali Asghar Ebrahimi Valmoozi^c

^aDepartment of Chemistry, Islamic Azad University-Zanjan Branch, PO Box 49195-467, Zanjan, Iran, ^bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and ^cDepartment of Chemistry, Tarbiat Modares University, Tehran, Iran

Correspondence e-mail: fahimeh_sabbaghi@yahoo.com

Received 14 January 2011; accepted 21 January 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.006 Å; R factor = 0.072; wR factor = 0.199; data-to-parameter ratio = 20.2.

In the title compound, $C_{14}H_{30}N_3OP$, both cyclohexyl groups adopt chair conformations with the NH unit in an equatorial position. The P atom adopts a slightly distorted tetrahedral environment. In the $(CH_3)_2NP(O)$ unit, the O-P-N-Ctorsion angles, showing the orientations of the methyl groups with respect to the phosphoryl group, are -166.6(3) and 34.6 (4)°. The O atom of the P=O group acts as a double hydrogen-bond acceptor and is involved in two different intermolecular N-H···OP hydrogen bonds, building $R_2^2(8)$ rings that are further linked into chains running parallel to the b axis.

Related literature

For the structure of a phosphoramidate with a $[(CH_3)_2N]P(O)$ unit, see: Ghadimi et al. (2009). For bond distances in related structures, see: Sabbaghi et al. (2010). For hydrogen-bond motifs, see: Etter et al. (1990); Bernstein et al. (1995). For double hydrogen-bond acceptors, see: Steiner (2002).

Experimental

Crystal data

C14H30N3OP $V = 1626.0 (10) \text{ Å}^3$ $M_r = 287.38$ Z = 4Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation a = 11.742 (4) Å $\mu = 0.17 \text{ mm}^{-1}$ b = 7.712 (3) Å T = 120 Kc = 18.366 (6) Å $0.23 \times 0.19 \times 0.13 \text{ mm}$ $\beta = 102.120(7)^{\circ}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1998) $T_{\rm min}=0.932,\;T_{\rm max}=0.974$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.072$	174 parameters
$wR(F^2) = 0.199$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.51 \ {\rm e} \ {\rm \AA}^{-3}$
3507 reflections	$\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$

11336 measured reflections

 $R_{\rm int} = 0.103$

3507 independent reflections

1873 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{matrix} N2 - H2 \cdots O1^{i} \\ N3 - H3 \cdots O1^{ii} \end{matrix}$	0.90 0.90	2.16 2.03	3.017 (4) 2.911 (4)	160 165

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL.

Support of this investigation by Islamic Azad University-Zanjan Branch is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2217).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (1998). SAINT-Plus and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Ghadimi, S., Pourayoubi, M. & Ebrahimi Valmoozi, A. A. (2009). Z.
- Naturforsch. Teil B, 64, 565-569. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P.,
- Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Sabbaghi, F., Pourayoubi, M., Toghraee, M. & Divjakovic, V. (2010). Acta Cryst. E66, 0344.

Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.

Acta Cryst. (2011). E67, o502 [doi:10.1107/S160053681100287X]

N,*N*'-Dicyclohexyl-*N*'',*N*''-dimethylphosphoric triamide

F. Sabbaghi, M. Pourayoubi, F. Karimi Ahmadabad, Z. Azarkamanzad and A. A. Ebrahimi Valmoozi

Comment

The structure determination was performed as a part of a project on the synthesis of new phosphorus compounds having a $[(CH_3)_2N]P(O)$ moiety (Ghadimi *et al.*, 2009).

In the crystal structure of the title compound the two cyclohexyl groups are in a chair conformation with the NH units in equatorial positions (Fig. 1). The P atom is in a slightly distorted tetrahedral environment with bond angles in the range of $100.87 (17)^{\circ} [N3-P1-N1]$ to $118.64 (16)^{\circ} [O1-P1-N3]$. In the (CH₃)₂NP(O) moiety, the dihedral angles O-P-N-C are -166.6 (3)° and 34.6 (4)°. The P-N bond lengths are comparable to those in similar compounds like for example in P(O)[NHC(O)C₆H₄(4-NO₂)][NHC₆H₁₁]₂ (Sabbaghi *et al.*, 2010).

The molecules are linked by two intermolecular N—H···OP hydrogen bonds into chains in the direction of the *b* axis in which the O atom of the P=O group acts as a double H-acceptors (Steiner, 2002) (Fig. 2). From this arrangement $R_2^2(8)$ rings are formed (Etter *et al.*, 1990; Bernstein *et al.*, 1995).

Experimental

Synthesis of ((CH₃)₂N)P(O)Cl₂ [(CH₃)₂NH₂]Cl (15.00 g, 0.184 mol) and P(O)Cl₃ (84.62 g, 0.552 mol) were refluxed for 8 h and afterwards the excess of P(O)Cl₃ was removed in vacuum.

Synthesis of title compound To a solution of $((CH_3)_2N)P(O)Cl_2$ (0.60 g, 3.7 mmol) in chloroform (15 mL), a solution of cyclohexylamine (1.47 g, 14.8 mmol) in chloroform (10 mL) was added at 273 K. After 4 h stirring, the solvent was removed and product was washed with deionized water and recrystallized from chloroform/methanol (4:1 v/v) at room temperature.

Refinement

The hydrogen atoms of NH groups were located by difference Fourier synthesis and normalized at standard value 0.90 Å, whereas the C-H H atoms were positioned with idealized geometry. All H atoms were refined isotropic with $U_{iso}(H) = 1.2U_{eq}(C, N)$ (1.5 for methyl H atoms) using a riding model.

Figures

Fig. 1. Molecular structure of title compound with labeling and displacement ellipsoids drawn at the 50% probability level.

Fig. 2. Part of the crystal structure of the title compound with hydrogen bonding shown as dotted lines (the C—H hydrogen atoms are omitted for clarity).

F(000) = 632 $D_{\rm x} = 1.174 \text{ Mg m}^{-3}$

 $\theta = 2.3-26.9^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 120 KPrizm, colorless $0.23 \times 0.19 \times 0.13 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 1063 reflections

N,*N*'-Dicyclohexyl-*N*'',N''-dimethylphosphoric triamide

Crystal data

$C_{14}H_{30}N_3OP$
$M_r = 287.38$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 11.742 (4) Å
<i>b</i> = 7.712 (3) Å
c = 18.366 (6) Å
$\beta = 102.120 \ (7)^{\circ}$
$V = 1626.0 (10) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	3507 independent reflections
Radiation source: normal-focus sealed tube	1873 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.103$
ϕ and ω scans	$\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1998)	$h = -15 \rightarrow 14$
$T_{\min} = 0.932, T_{\max} = 0.974$	$k = -9 \rightarrow 9$
11336 measured reflections	<i>l</i> = −23→22

Refinement

Refinement on F^2

Primary atom site location: structure-invariant direct methods

Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.072$	Hydrogen site location: mixed
$wR(F^2) = 0.199$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.062P)^{2} + 2.1669P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3507 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
174 parameters	$\Delta \rho_{max} = 0.51 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.47 \ e \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
P1	0.15685 (9)	0.10911 (13)	0.22176 (6)	0.0231 (3)
01	0.2842 (2)	0.0799 (3)	0.23095 (15)	0.0261 (6)
N1	0.1077 (3)	0.2079 (4)	0.14150 (19)	0.0287 (8)
N2	0.0944 (3)	-0.0770 (4)	0.23092 (18)	0.0250 (8)
H2	0.1465	-0.1633	0.2435	0.030*
N3	0.1111 (3)	0.2411 (4)	0.27929 (18)	0.0242 (8)
Н3	0.1359	0.3518	0.2819	0.029*
C1	0.1595 (4)	0.1671 (6)	0.0782 (2)	0.0385 (11)
H1A	0.1662	0.2733	0.0501	0.058*
H1B	0.1101	0.0834	0.0458	0.058*
H1C	0.2371	0.1170	0.0960	0.058*
C2	-0.0065 (4)	0.2895 (6)	0.1205 (3)	0.0371 (11)
H2A	0.0010	0.4007	0.0961	0.056*
H2B	-0.0381	0.3090	0.1652	0.056*
H2C	-0.0591	0.2135	0.0861	0.056*
C3	-0.0309 (3)	-0.1127 (5)	0.2152 (2)	0.0229 (8)
H3A	-0.0725	-0.0033	0.2230	0.027*
C4	-0.0756 (3)	-0.1728 (5)	0.1348 (2)	0.0281 (9)
H4A	-0.0616	-0.0807	0.1002	0.034*
H4B	-0.0320	-0.2774	0.1252	0.034*
C5	-0.2050 (4)	-0.2142 (6)	0.1202 (2)	0.0302 (10)
H5A	-0.2312	-0.2551	0.0682	0.036*
H5B	-0.2492	-0.1079	0.1264	0.036*

C6	-0.2297 (4)	-0.3535 (5)	0.1737 (2)	0.0299 (10)
H6A	-0.3145	-0.3766	0.1642	0.036*
H6B	-0.1899	-0.4624	0.1651	0.036*
C7	-0.1876 (3)	-0.2957 (5)	0.2534 (2)	0.0279 (9)
H7A	-0.2012	-0.3897	0.2873	0.033*
H7B	-0.2329	-0.1931	0.2631	0.033*
C8	-0.0574 (4)	-0.2497 (5)	0.2699 (2)	0.0272 (9)
H8A	-0.0113	-0.3555	0.2661	0.033*
H8B	-0.0342	-0.2049	0.3214	0.033*
C9	0.1053 (3)	0.1887 (5)	0.3554 (2)	0.0229 (9)
H9A	0.0596	0.0784	0.3517	0.027*
C10	0.0390 (4)	0.3243 (5)	0.3902 (2)	0.0295 (10)
H10A	-0.0386	0.3432	0.3576	0.035*
H10B	0.0819	0.4356	0.3947	0.035*
C11	0.0243 (4)	0.2654 (6)	0.4670 (3)	0.0362 (11)
H11A	-0.0234	0.1586	0.4621	0.043*
H11B	-0.0168	0.3563	0.4895	0.043*
C12	0.1444 (4)	0.2298 (6)	0.5181 (2)	0.0385 (11)
H12A	0.1894	0.3391	0.5268	0.046*
H12B	0.1334	0.1863	0.5669	0.046*
C13	0.2116 (4)	0.0969 (6)	0.4830 (2)	0.0362 (10)
H13A	0.1707	-0.0160	0.4797	0.043*
H13B	0.2900	0.0814	0.5150	0.043*
C14	0.2238 (3)	0.1534 (6)	0.4049 (2)	0.0298 (10)
H14A	0.2720	0.2596	0.4086	0.036*
H14B	0.2637	0.0611	0.3822	0.036*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0193 (5)	0.0217 (5)	0.0295 (6)	-0.0005 (4)	0.0079 (4)	-0.0001 (4)
01	0.0198 (14)	0.0238 (15)	0.0363 (16)	-0.0024 (11)	0.0096 (12)	-0.0017 (12)
N1	0.028 (2)	0.0280 (19)	0.031 (2)	0.0039 (15)	0.0084 (15)	0.0020 (15)
N2	0.0175 (17)	0.0233 (18)	0.0352 (19)	0.0007 (13)	0.0077 (14)	0.0006 (14)
N3	0.0225 (18)	0.0228 (18)	0.0289 (19)	-0.0022 (13)	0.0087 (14)	-0.0016 (14)
C1	0.055 (3)	0.030 (2)	0.034 (3)	0.004 (2)	0.019 (2)	0.0054 (19)
C2	0.033 (3)	0.034 (2)	0.043 (3)	0.006 (2)	0.003 (2)	0.007 (2)
C3	0.0155 (19)	0.0207 (19)	0.033 (2)	-0.0009 (16)	0.0064 (16)	-0.0002 (17)
C4	0.029 (2)	0.027 (2)	0.031 (2)	-0.0042 (18)	0.0119 (18)	-0.0033 (18)
C5	0.026 (2)	0.036 (2)	0.029 (2)	-0.0036 (18)	0.0054 (18)	-0.0019 (18)
C6	0.021 (2)	0.029 (2)	0.041 (3)	-0.0014 (17)	0.0086 (18)	-0.0020 (19)
C7	0.024 (2)	0.025 (2)	0.038 (2)	-0.0022 (17)	0.0133 (18)	0.0024 (18)
C8	0.026 (2)	0.025 (2)	0.031 (2)	0.0017 (17)	0.0058 (17)	0.0008 (17)
C9	0.019 (2)	0.023 (2)	0.029 (2)	-0.0053 (16)	0.0085 (16)	-0.0014 (17)
C10	0.028 (2)	0.026 (2)	0.039 (2)	-0.0008 (18)	0.0164 (19)	0.0023 (18)
C11	0.038 (3)	0.036 (3)	0.041 (3)	0.000 (2)	0.020 (2)	-0.001 (2)
C12	0.046 (3)	0.045 (3)	0.024 (2)	-0.007 (2)	0.006 (2)	-0.002 (2)
C13	0.031 (2)	0.041 (3)	0.036 (2)	-0.005 (2)	0.0048 (19)	0.006 (2)

C14	0.024 (2)	0.031 (2)	0.035 (2)	-0.0026 (17)	0.0082 (18)	0.0004 (18)
Geometric para	meters (Å, °)					
P1-01		1 486 (3)	С6—	C7	1:	511 (6)
P1—N2		1.636 (3)	C6—	H6A	0.9	9900
P1—N3		1.637 (3)	C6—	H6B	0.9	9900
P1—N1		1.652 (4)	C7—	C8	1	536 (6)
N1—C2		1.457 (5)	C7—	H7A	0.9	9900
N1-C1		1.456 (5)	C7—	H7B	0.9	9900
N2—C3		1.465 (5)	C8—	H8A	0.9	9900
N2—H2		0.9000	C8—	H8B	0.9	9900
N3—C9		1.471 (5)	C9—	C14	1.:	518 (5)
N3—H3		0.9000	C9—	C10	1.:	522 (5)
C1—H1A		0.9800	С9—	H9A	1.0	0000
C1—H1B		0.9800	C10–	-C11	1.:	526 (6)
C1—H1C		0.9800	C10–	-H10A	0.9	9900
C2—H2A		0.9800	C10–	-H10B	0.9	9900
C2—H2B		0.9800	C11–	-C12	1.:	545 (6)
C2—H2C		0.9800	C11–	-H11A	0.9	9900
C3—C4		1.532 (5)	C11–	-H11B	0.9	9900
С3—С8		1.534 (5)	C12–	C13	1.:	518 (6)
С3—НЗА		1.0000	C12–	-H12A	0.9	9900
C4—C5		1.521 (6)	C12-	-H12B	0.9	9900
C4—H4A		0.9900	C13–	-C14	1.:	535 (6)
C4—H4B		0.9900	C13–	-H13A	0.9	9900
C5—C6		1.524 (6)	C13–	-H13B	0.9	9900
C5—H5A		0.9900	C14-	-H14A	0.9	9900
С5—Н5В		0.9900	C14-	-H14B	0.9	9900
O1—P1—N2		108.49 (16)	Н6А-	—С6—Н6В	10	8.1
O1—P1—N3		118.64 (16)	С6—	С7—С8	11	1.7 (3)
N2—P1—N3		105.33 (17)	С6—	С7—Н7А	10	9.3
O1—P1—N1		109.04 (17)	C8—	С7—Н7А	10	9.3
N2—P1—N1		114.59 (17)	С6—	С7—Н7В	10	9.3
N3—P1—N1		100.87 (17)	C8—	С7—Н7В	10	9.3
C2—N1—C1		113.4 (3)	H7A-	—С7—Н7В	10	08.0
C2—N1—P1		124.4 (3)	С7—	C8—C3	11	1.1 (3)
C1—N1—P1		119.1 (3)	C7—	C8—H8A	10	9.4
C3—N2—P1		126.7 (3)	C3—	C8—H8A	10	9.4
C3—N2—H2		120.8	С7—	C8—H8B	10	9.4
P1—N2—H2		112.3	C3—	C8—H8B	10	9.4
C9—N3—P1		122.0 (3)	H8A-		10	08.0
C9—N3—H3		106.8	N3—	C9—C14	11	3.4 (3)
P1—N3—H3		118.5	N3—	C9—C10	10	9.9 (3)
N1—C1—H1A		109.5	C14–	-C9-C10	11	1.0 (3)
N1—C1—H1B		109.5	N3—	С9—Н9А	10	07.4
H1A—C1—H1B		109.5	C14–	-С9—Н9А	10	07.4
N1—C1—H1C		109.5	C10–	-С9—Н9А	10	07.4
H1A—C1—H1C		109.5	С9—	C10—C11	11	0.5 (3)

	100.5	C0 C10 U10A	100.6
	109.5	C9—C10—H10A	109.0
NI-C2-H2A	109.5		109.0
NI—C2—H2B	109.5	C9—C10—H10B	109.6
H2A—C2—H2B	109.5	С11—С10—Н10В	109.6
N1—C2—H2C	109.5	H10A—C10—H10B	108.1
H2A—C2—H2C	109.5	C10-C11-C12	110.5 (3)
H2B—C2—H2C	109.5	C10-C11-H11A	109.6
N2—C3—C4	111.9 (3)	C12—C11—H11A	109.6
N2—C3—C8	109.5 (3)	C10-C11-H11B	109.6
C4—C3—C8	110.3 (3)	C12-C11-H11B	109.6
N2—C3—H3A	108.3	H11A—C11—H11B	108.1
С4—С3—НЗА	108.3	C13—C12—C11	110.5 (4)
С8—С3—НЗА	108.3	C13—C12—H12A	109.5
C5—C4—C3	111.2 (3)	C11—C12—H12A	109.5
С5—С4—Н4А	109.4	C13—C12—H12B	109.5
C3—C4—H4A	109.4	C11—C12—H12B	109.5
C5—C4—H4B	109.4	H12A—C12—H12B	108.1
C3—C4—H4B	109.4	C12—C13—C14	111.4 (4)
H4A—C4—H4B	108.0	С12—С13—Н13А	109.3
C4—C5—C6	110.6 (3)	C14—C13—H13A	109.3
C4—C5—H5A	109.5	C12—C13—H13B	109.3
C6_C5_H5A	109.5	C14_C13_H13B	109.3
C4-C5-H5B	109.5	$H_{13} - C_{13} - H_{13} B$	109.5
C6 C5 H5B	109.5	$C_{0} C_{14} C_{13}$	100.0 110.0(3)
	109.5	$C_{2} = C_{14} = C_{15}$	100.5
	100.1	$C_{2} = C_{14} = H_{14A}$	109.5
$C_{1} = C_{0} = C_{3}$	110.4 (5)	C13-C14-H14A	109.5
	109.6	C9—C14—H14B	109.5
С5—С6—Н6А	109.6	CI3-CI4-HI4B	109.5
С/—С6—Н6В	109.6	H14A—C14—H14B	108.1
С5—С6—Н6В	109.6		
O1—P1—N1—C2	-166.6 (3)	C3—C4—C5—C6	-58.0 (4)
N2—P1—N1—C2	71.6 (4)	C4—C5—C6—C7	57.8 (4)
N3—P1—N1—C2	-40.9 (4)	C5—C6—C7—C8	-56.5 (4)
O1—P1—N1—C1	34.6 (4)	C6—C7—C8—C3	55.2 (4)
N2—P1—N1—C1	-87.2 (3)	N2-C3-C8-C7	-177.9 (3)
N3—P1—N1—C1	160.2 (3)	C4—C3—C8—C7	-54.3 (4)
O1—P1—N2—C3	-170.3 (3)	P1—N3—C9—C14	65.7 (4)
N3—P1—N2—C3	61.7 (3)	P1—N3—C9—C10	-169.4(3)
N1—P1—N2—C3	-48.2 (4)	N3—C9—C10—C11	175.8 (3)
O1—P1—N3—C9	-77.8 (3)	C14—C9—C10—C11	-57.9 (4)
N2—P1—N3—C9	43.8 (3)	C9—C10—C11—C12	57.5 (5)
N1 - P1 - N3 - C9	163 3 (3)	C10-C11-C12-C13	-565(5)
P1—N2—C3—C4	91.1 (4)	C11-C12-C13-C14	55.4 (5)
P1N2C3C8	-146 3 (3)	N_{3} C9 C14 C13	-179 2 (3)
$N_2 = C_3 = C_4 = C_5$	178 3 (3)	(10 - C9 - C14 - C13)	566(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56.1 (4)	$C_{10} - C_{7} - C_{14} - C_{15}$	-557(5)
0-03-04-03	50.1 (4)	U12-U13-U14-U9	55.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A			
N2—H2···O1 ⁱ	0.90	2.16	3.017 (4)	160			
N3—H3···O1 ⁱⁱ	0.90	2.03	2.911 (4)	165			
Symmetry codes: (i) $-x+1/2$, $y-1/2$, $-z+1/2$; (ii) $-x+1/2$, $y+1/2$, $-z+1/2$.							

Fig. 2